Format

Send to

Choose Destination
Am J Med. 2000 Mar;108(4):317-30.

Apoptosis and neurologic disease.

Author information

1
Department of Neurology, UT Southwestern Medical Center, Dallas, Texas 75235-9036, USA.

Abstract

Many neurological disorders involve cell death. During development of the nervous system, cell death is a normal feature. Elimination of substantial numbers of initially generated cells enables useful pruning of "mismatched" or excessive cells produced by exuberance during the proliferative and migratory phases of development. Such cell death, occurring by "programmed" pathways, is termed apoptosis. In mature organisms, cells die in two major fashions, either by necrosis or apoptosis. In the adult nervous system, because there is little cell production during adulthood, there is little normal cell death. However, neurological disease is often associated with significant neural cell death. Acute disorders, occurring over minutes to hours, such as brain trauma, infarction, hemorrhage, or infection, prominently involve cell death, much of which is by necrosis. Chronic disorders, with relatively slow central nervous system degeneration, may occur over years or decades, but may involve cell losses. Such disorders include motor neuron diseases such as amyotrophic lateral sclerosis (ALS), cerebral dementing disorders such as Alzheimer's disease and frontotemporal dementia, and a variety of degenerative movement disorders including Parkinson's disease, Huntington's disease, and the inherited ataxias. There is evidence that the mechanism of neuronal cell death in these disorders may involve apoptosis. Direct conclusive evidence of apoptosis is scarce in these chronic disorders, because of the swiftness of cell death in relation to the slowness of the disease. Thus, at any particular time point of assessment, very few cells would be expected to be undergoing death. However, it is clearly of importance to define the type of cell death in these disorders. Of significance is that while treating the underlying causes of these conditions is an admirable goal, it may also be possible to develop productive therapies based on alleviating the process of cell death. This is particularly likely if this cell loss is through apoptosis, a programmed process for which the molecular cascade is increasingly understood. This article reviews our understanding of apoptosis in the nervous system, concentrating on its possible roles in chronic neurodegenerative disorders.

PMID:
11014725
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center