Send to

Choose Destination
Can J Microbiol. 2000 Sep;46(9):841-7.

High-frequency interconversion of turbid and clear plaque strains of bacteriophage f1 and associated host cell death.

Author information

Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China.


Under normal cultivation conditions, a mixture of turbid and clear plaques is often apparent in cultures of bacterial cells infected with filamentous bacteriophages. Beginning with a culture of wild-type filamentous phage f1, which itself produces turbid plaques, a clear plaque strain (c1) was isolated. From c1, the turbid plaque strain t1 was isolated; from t1, the clear plaque strain c2 was isolated; and from c2, the turbid plaque strain t2 was isolated. Each of these strains was generated with a frequency of approximately 1 x 10(-4). Although filamentous phages have been thought not to induce host cell death, both turbid and clear plaque strains of f1 killed host bacteria. Plating of bacterial cells 1 h after infection revealed that colonies produced by cells infected with either wild-type f1 or strain c2 were smaller than those derived from uninfected cells, and that colony formation by infected cells was reduced by 15% and 38%, respectively. The time course of bacterial growth revealed that, at 4 h after infection, the number of CFU per milliliter of culture of cells infected with wild-type f1 or with strain c2 was reduced by 27% and 95%, respectively, compared with that for uninfected cells. Microculture analysis also revealed that the percentages of nondividing cells in f1 or c2 infected were 19% and 52%, respectively, 4 h after infection with wild-type f1 or with strain c2; no such cells were detected in cultures of uninfected cells. Negative staining and electron microscopy showed that 20% and 61% of cells infected with wild-type f1 or with strain c2 were dead 4 h postinfection. Finally, although the rates of DNA synthesis were similar for infected and uninfected cells, the rates of RNA and protein synthesis were markedly reduced in infected cells.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center