Send to

Choose Destination
See comment in PubMed Commons below
J Bacteriol. 2000 Oct;182(20):5706-14.

Role of the Escherichia coli nucleotide excision repair proteins in DNA replication.

Author information

  • 1Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands.


DNA polymerase I (PolI) functions both in nucleotide excision repair (NER) and in the processing of Okazaki fragments that are generated on the lagging strand during DNA replication. Escherichia coli cells completely lacking the PolI enzyme are viable as long as they are grown on minimal medium. Here we show that viability is fully dependent on the presence of functional UvrA, UvrB, and UvrD (helicase II) proteins but does not require UvrC. In contrast, delta polA cells grow even better when the uvrC gene has been deleted. Apparently UvrA, UvrB, and UvrD are needed in a replication backup system that replaces the PolI function, and UvrC interferes with this alternative replication pathway. With specific mutants of UvrC we could show that the inhibitory effect of this protein is related to its catalytic activity that on damaged DNA is responsible for the 3' incision reaction. Specific mutants of UvrA and UvrB were also studied for their capacity to support the PolI-independent replication. Deletion of the UvrC-binding domain of UvrB resulted in a phenotype similar to that caused by deletion of the uvrC gene, showing that the inhibitory incision activity of UvrC is mediated via binding to UvrB. A mutation in the N-terminal zinc finger domain of UvrA does not affect NER in vivo or in vitro. The same mutation, however, does give inviability in combination with the delta polA mutation. Apparently the N-terminal zinc-binding domain of UvrA has specifically evolved for a function outside DNA repair. A model for the function of the UvrA, UvrB, and UvrD proteins in the alternative replication pathway is discussed.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center