Send to

Choose Destination
Toxicol Appl Pharmacol. 2000 Oct 1;168(1):64-71.

Effect of bioflavonoids extracted from the bark of Pinus maritima on proinflammatory cytokine interleukin-1 production in lipopolysaccharide-stimulated RAW 264.7.

Author information

Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Kusong-dong 373-1, Taejon, 305-701, Korea.


Currently, bioflavonoids have been known to have strong antioxidant capacities, and a variety of efforts have been made to identify the utilities of bioflavonoids in treating various diseases based on their antioxidant capacities. The effects of bioflavonoids extracted from the bark of Pinus maritima Pycnogenol (PYC) on free radical formation, activation of redox sensitive transcription factors, as well as interleukin-1 beta (IL-1 beta) production were investigated in murine macrophage cell lines. PYC exerted strong scavenging activities against reactive oxygen species generated either by H(2)O(2) or PMA in RAW 264.7 and IC-21 cells, respectively. In situ ELISA, immunoblot analysis, and competitive RT-PCR demonstrated that PYC pretreatment of LPS-stimulated RAW 264.7 cells dose-dependently reduced both the production of IL-1 beta and its mRNA levels. Furthermore, in the same cells, PYC blocked the activation of nuclear factor kappa B (NF-kappa B) and activator protein-1 (AP-1), two major transcription factors centrally involved in IL-1 beta gene expression. When RAW 264.7 cells were stimulated with LPS, the inhibitor protein I kappa B largely disappeared from cytosolic fractions. However, pretreatment of the cells with PYC abolished the LPS-induced I kappa B degradation. These results suggest that PYC can inhibit the expression of the proinflammatory cytokine IL-1 by regulating redox-sensitive transcription factors. This study may support the possibility that bioflavonoids including PYC can be used as antiinflammatory and immunosuppressive drugs based on their radical scavenging activities.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center