Format

Send to

Choose Destination
Biochem J. 2000 Oct 1;351(Pt 1):87-93.

p53 protein oxidation in cultured cells in response to pyrrolidine dithiocarbamate: a novel method for relating the amount of p53 oxidation in vivo to the regulation of p53-responsive genes.

Author information

1
Department of Chemistry and Biochemistry, California State University at Los Angeles, 5151 State University Dr., Los Angeles, CA 90032, USA.

Abstract

A novel method was developed to determine the oxidation status of proteins in cultured cells. Methoxy-polyethylene glycol-maleimide MW 2000 (MAL-PEG) was used to covalently tag p53 protein that was oxidized at cysteine residues in cultured cells. Treatment of MCF7 breast cancer cells with pyrrolidine dithiocarbamate (PDTC), a metal chelator, resulted in a minimum of 25% oxidation of p53. The oxidized p53 had an average of one cysteine residue oxidized per p53 protein molecule. The effect of PDTC treatment on downstream components of the p53 signal-transduction pathway was tested. PDTC treatment prevented actinomycin D-mediated up-regulation of two p53 effector gene products, murine double minute clone 2 oncoprotein and p21(WAF1/CIP1) (where WAF1 corresponds to wild-type p53-activated fragment 1 and CIP1 corresponds to cyclin-dependent kinase-interacting protein 1). Actinomycin D treatment led to accumulation of p53 protein in the nucleus. However, when cells were simultaneously treated with PDTC and actinomycin D, p53 accumulated in both the nucleus and the cytoplasm. The data indicate that an average of one cysteine residue per p53 protein molecule is highly sensitive to oxidation and that p53 can be efficiently oxidized by PDTC in cultured cells. PDTC-mediated oxidation of p53 correlates with altered p53 subcellular localization and reduced activation of p53 downstream effector genes. The novel method for detecting protein oxidation detailed in the present study may be used to determine the oxidation status of specific proteins in cells.

PMID:
10998350
PMCID:
PMC1221338
DOI:
10.1042/0264-6021:3510087
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center