Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2000 Dec 15;275(50):39403-10.

Ubiquitin-mediated proteolysis of a short-lived regulatory protein depends on its cellular localization.

Author information

  • 1Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, Berlin 13092, Germany.


In this study we demonstrate that the Deg1 degradation signal of the transcriptional repressor Matalpha2 confers compartment-specific turnover to a reporter protein. Rapid degradation of a Deg1-containing fusion protein is observed only when the reporter is efficiently imported into the nucleus. In contrast, a reporter that is constantly exported from the nucleus exhibits an extended half-life. Furthermore, nuclear import functions are crucial for both Deg1-induced degradation as well as for the turnover of the endogenous Matalpha2 protein. The conjugation of ubiquitin to a Deg1-containing reporter protein is abrogated in mutants affected in nuclear import. Obviously, the Deg1 signal initiates rapid proteolysis within the nucleoplasm, whereas in the cytosol it mediates turnover via a slower pathway. In both pathways the ubiquitin-conjugating enzymes Ubc6p/Ubc7p play a pivotal role. These observations imply that both the cellular targeting of a substrate and the compartment-specific activity of components of the ubiquitin-proteasome system define the half-life of naturally short-lived proteins.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center