Send to

Choose Destination
Eur J Appl Physiol. 2000 Aug;82(5-6):499-503.

Energy expenditure of horse riding.

Author information

Université Paris XII-STAPS-61, Créteil, France.


Oxygen consumption (VO2), ventilation (VE) and heart rate (HR) were studied in five recreational riders with a portable oxygen analyser (K2 Cosmed, Rome) telemetric system, during two different experimental riding sessions. The first one was a dressage session in which the rider successively rode four different horses at a walk, trot and canter. The second one was a jumping training session. Each rider rode two horses, one known and one unknown. The physiological parameters were measured during warm up at a canter in suspension and when jumping an isolated obstacle at a trot and canter. This session was concluded by a jumping course with 12 obstacles. The data show a progressive increase in VO2 during the dressage session from a mean value of 0.70 (0.18) l x min(-1) [mean (SD)] at a walk, to 1.47 (0.28) l x min(-1) at a trot, and 1.9 (0.3) l x min(-1) at a canter. During the jumping session, rider VO2 was 2 (0.33) l x min(-1) with a mean HR of 155 beats x min(-1) during canter in suspension, obstacle trot and obstacle canter. The jumping course significantly enhanced VO2 and HR up to mean values of 2.40 (0.35) l x min(-1) and 176 beats x min(-1), respectively. The comparison among horses and riders during the dressage session shows differences in energy expenditure according to the horse for the same rider and between riders. During the jumping session, there was no statistical difference between riders riding known and unknown horses. In conclusion these data confirm that riding induces a significant increase in energy expenditure. During jumping, a mean value of 75% VO2max was reached. Therefore, a good aerobic capacity seems to be a factor determining riding performance in competitions. Regular riding practice and additional physical training are recommended to enhance the physical fitness of competitive riders.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center