Format

Send to

Choose Destination
Biochim Biophys Acta. 2000 Sep 7;1493(1-2):73-81.

Involvement of inorganic polyphosphate in expression of SOS genes.

Author information

1
Division of Molecular Chemistry, Graduate School of Engineering, Hokkaido University, 060-8628, Sapporo, Japan.

Abstract

Inorganic polyphosphate (poly(P)) is a linear polymer that has been found in every organism so far examined. To elucidate the functions of poly(P) in the regulation of gene expression, the level of cellular poly(P) in Escherichia coli was reduced to a barely detectable concentration by overproduction of exopolyphosphatase (exopoly(P)ase) with a plasmid encoding yeast exopoly(P)ase (Shiba et al., Proc. Natl. Acad. Sci. USA 94 (1997) 11210-11215). It was found that exopoly(P)ase-overproducing cells were more sensitive to UV or mitomycin C (MMC) than were control cells. Poly(P) accumulation was observed after treatment with MMC, whereas the poly(P) level was below the detectable level in cells that overproduced exopoly(P)ase. When exopoly(P)ase-overproducing cells were transformed again by a multiple copy number plasmid that carries the polyphosphate kinase gene (ppk), the cells accumulated a great amount of poly(P) and restored the UV and MMC sensitivities to the level of control cells. In exopoly(P)ase-overproducing cells, the expression of recA and umuDC were not induced by MMC. In addition, a strain containing multiple copies of ppk accumulated not only a large amount of poly(P) but also recA mRNA. Since recA expression was induced in a recA-deletion strain harboring a plasmid with the ppk gene, poly(P) could be necessary for regulating the expression of SOS genes without depending on the RecA-LexA regulatory network.

PMID:
10978509
DOI:
10.1016/s0167-4781(00)00165-2
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center