Send to

Choose Destination
Mol Endocrinol. 2000 Sep;14(9):1387-97.

Intracellular vitamin D binding proteins: novel facilitators of vitamin D-directed transactivation.

Author information

Burns and Allen Research Institute and Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, University of California Los Angeles School of Medicine, 90048, USA.


Previously recognized intracellular proteins with an affinity for vitamin D metabolites include the vitamin D receptor and the cytochrome P-450-based vitamin D metabolizing mixed-function oxidases. We recently characterized a third set of high-capacity, intracellular vitamin D binding proteins (IDBPs) in the inducible heat shock protein-70 (hsp-70) family. Here we report the cloning and expression of cDNAs coding for two IDBPs. The full-length cDNAs for IDBP-1 and IDBP-2 demonstrated 95% and 94% nucleotide homology, respectively, with the cDNAs for human constitutively expressed heat shock protein 70 (hsc-70) and hsp-70. Transient expression of the IDBP cDNAs in a vitamin D-responsive primate cell line increased extractable 25-hydroxylated vitamin D metabolite-IDBP-binding 25-fold. Transfection experiments also demonstrated that the majority of the constitutively expressed 25-hydroxylated vitamin D metabolite binding activity was attributable to expression of the hsc-70-related IDBP-1 and that metabolite binding activity sublocalized to the highly conserved ATP-binding/ATPase domain of hsp-70s. Stable overexpression of IDBP-1 in wild-type cells enhanced vitamin D-directed responsiveness of endogenous vitamin D-24-hydroxylase, osteopontin, and osteocalcin genes by several-fold over that observed in cells transfected with an empty vector. These results suggest that IDBP-1 facilitates the intracellular localization of active vitamin D metabolites and vitamin D receptor-mediated transactivation.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center