Format

Send to

Choose Destination
Nat Biotechnol. 2000 Sep;18(9):959-63.

Tissue-engineered bone regeneration.

Author information

1
Laboratoire de Recherches Orthopédiques, CNRS UPRES A 7052, Université D. Diderot, Faculté de Médecine, Lariboisière Saint-Louis, 10 avenue de Verdun, 75010 Paris, France. hpetite@infobiogen.fr

Abstract

Bone lesions above a critical size become scarred rather than regenerated, leading to nonunion. We have attempted to obtain a greater degree of regeneration by using a resorbable scaffold with regeneration-competent cells to recreate an embryonic environment in injured adult tissues, and thus improve clinical outcome. We have used a combination of a coral scaffold with in vitro-expanded marrow stromal cells (MSC) to increase osteogenesis more than that obtained with the scaffold alone or the scaffold plus fresh bone marrow. The efficiency of the various combinations was assessed in a large segmental defect model in sheep. The tissue-engineered artificial bone underwent morphogenesis leading to complete recorticalization and the formation of a medullary canal with mature lamellar cortical bone in the most favorable cases. Clinical union never occurred when the defects were left empty or filled with the scaffold alone. In contrast, clinical union was obtained in three out of seven operated limbs when the defects were filled with the tissue-engineered bone.

Comment in

PMID:
10973216
DOI:
10.1038/79449
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center