Send to

Choose Destination
Mol Microbiol. 2000 Aug;37(4):885-97.

The ClpX protein of Bacillus subtilis indirectly influences RNA polymerase holoenzyme composition and directly stimulates sigma-dependent transcription.

Author information

Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Beaverton 97006, USA. Health Sciences Cen.


In Bacillus subtilis, several processes associated with the onset of stationary phase, including the initiation of sporulation, require the activity of the minor sigmaH form of RNA polymerase (RNAP). The induction of sigmaH-dependent gene transcription requires the regulatory ATPase, ClpX. The ClpX-dependent post-exponential increase in sigmaH activity is not dependent on the activator of sporulation gene expression, Spo0A. By determining the level of sigmaH and sigmaA in whole-cell extracts and RNAP preparations, evidence is presented that clpX does not influence the concentration of sigma subunits, but is required for the stationary phase reduction in sigmaA-RNAP holoenzyme. This is probably an indirect consequence of ClpX activity, because the ClpX-dependent decrease in sigmaA-RNAP concentration does not occur in a spo0A abrB mutant. The addition of ClpX to in vitro transcription reactions resulted in the stimulation of RNAP holoenzyme activity, but sigmaH-RNAP was observed to be more sensitive to ClpX-dependent stimulation than sigmaA-RNAP. No difference in transcriptional activity was observed in single-cycle in vitro transcription reactions, suggesting that ClpX acted at a step in transcription initiation after closed- and open-promoter complex formation. ClpX is proposed to function indirectly in the displacement of sigmaA from core RNAP and to act directly in the stimulation of sigmaH-dependent transcription in sporulating B. subtilis cells.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center