Self-consistent density functional calculation of field emission currents from metals

Phys Rev Lett. 2000 Aug 21;85(8):1750-3. doi: 10.1103/PhysRevLett.85.1750.

Abstract

We have developed a fully self-consistent method which is suitable to examine field emission currents, on the basis of the density functional theory. In our method, the nearby counterelectrode is not necessary. By using this method, we have investigated field emission currents from a biased metallic surface represented by the jellium model. We have found that the energy barrier between the jellium and vacuum becomes lower than the Fermi energy under strong electric fields (e.g., 10 V/nm for r(s) = 4 bohr). In this situation, the slope of the Fowler-Nordheim plot becomes flatter than that under a weaker field.