Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2000 Sep 1;20(17):6431-41.

Phenotypic characterization of an alpha 4 neuronal nicotinic acetylcholine receptor subunit knock-out mouse.

Author information

  • 1Neurosciences Group, Monash University Department of Medicine and Institute of Reproduction and Development, Monash Medical Centre, Clayton, Victoria, 3168, Australia.

Abstract

Neuronal nicotinic acetylcholine receptors (nAChR) are present in high abundance in the nervous system (Decker et al., 1995). There are a large number of subunits expressed in the brain that combine to form multimeric functional receptors. We have generated an alpha(4) nAChR subunit knock-out line and focus on defining the behavioral role of this receptor subunit. Homozygous mutant mice (Mt) are normal in size, fertility, and home-cage behavior. Spontaneous unconditioned motor behavior revealed an ethogram characterized by significant increases in several topographies of exploratory behavior in Mt relative to wild-type mice (Wt) over the course of habituation to a novel environment. Furthermore, the behavior of Mt in the elevated plus-maze assay was consistent with increased basal levels of anxiety. In response to nicotine, Wt exhibited early reductions in a number of behavioral topographies, under both unhabituated and habituated conditions; conversely, heightened levels of behavioral topographies in Mt were reduced by nicotine in the late phase of the unhabituated condition. Ligand autoradiography confirmed the lack of high-affinity binding to radiolabeled nicotine, cytisine, and epibatidine in the thalamus, cortex, and caudate putamen, although binding to a number of discrete nuclei remained. The study confirms the pivotal role played by the alpha(4) nAChR subunit in the modulation of a number of constituents of the normal mouse ethogram and in anxiety as assessed using the plus-maze. Furthermore, the response of Mt to nicotine administration suggests that persistent nicotine binding sites in the habenulo-interpeduncular system are sufficient to modulate motor activity in actively exploring mice.

PMID:
10964949
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center