Format

Send to

Choose Destination
Mech Dev. 2000 Sep;96(2):197-207.

The domineering non-autonomy of frizzled and van Gogh clones in the Drosophila wing is a consequence of a disruption in local signaling.

Author information

1
Biology Department and Cancer Center, University of Virginia, Charlottesville 22903, USA. pna@virginia.edu

Abstract

The frizzled (fz) gene is required for the development of distally pointing hairs on the Drosophila wing. It has been suggested that fz is needed for the propagation of a signal along the proximal distal axis of the wing. The directional domineering non-autonomy of fz clones could be a consequence of a failure in the propagation of this signal. We have tested this hypothesis in two ways. In one set of experiments we used the domineering non-autonomy of fz and Vang Gogh (Vang) clones to assess the direction of planar polarity signaling in the wing. prickle (pk) mutations alter wing hair polarity in a cell autonomous way, so pk cannot be altering a global polarity signal. However, we found that pk mutations altered the direction of the domineering non-autonomy of fz and Vang clones, arguing that this domineering non-autonomy is not due to an alteration in a global signal. In a second series of experiments we ablated cells in the pupal wing. We found that a lack of cells that could be propagating a long-range signal did not alter hair polarity. We suggest that fz and Vang clones result in altered levels of a locally acting signal and the domineering non-autonomy results from wild-type cells responding to this abnormal signal.

PMID:
10960784
DOI:
10.1016/s0925-4773(00)00392-0
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center