Format

Send to

Choose Destination
Biochemistry. 2000 Aug 22;39(33):10172-6.

Oxidation-reduction properties of disulfide-containing proteins of the Rhodobacter capsulatus cytochrome c biogenesis system.

Author information

1
Department of Chemistry and Biochemistry, Texas Tech University, Lubbock 79409-1061, USA.

Abstract

Oxidation-reduction titrations for the active-site disulfide/dithiol couples of the helX- and ccl2-encoded proteins involved in cytochrome c biogenesis in the purple non-sulfur bacterium Rhodobacter capsulatus have been carried out. The R. capsulatus HelX and Ccl2 proteins are predicted to function as part of a dithiol/disulfide cascade that reduces a disulfide on the apocytochromes c so that two cysteine thiols are available to form thioether linkages between the heme prosthetic group and the protein. Oxidation-reduction midpoint potential (E(m)) values, at pH 7.0, of -300 +/- 10 and -210 +/- 10 mV were measured for the HelX and Ccl2 (a soluble, truncated form of Ccl2) R. capsulatus proteins, respectively. Titrations of the disulfide/dithiol couple of a peptide designed to serve as a model for R. capsulatus apocytochrome c(2) have also been carried out, and an E(m) value of -170 +/- 10 mV was measured for the model peptide at pH 7.0. E(m) versus pH plots for HelX, Ccl2, and the apocytochrome c(2) model peptide were all linear over the pH range from 5.0 to 8.0, with the -59 mV/pH unit slope expected for a reaction in which two protons are taken up for each disulfide that is reduced. These results provide thermodynamic support for the proposal that HelX reduces Ccl2 and that reduced Ccl2, in turn, serves as the reductant for the production of the two thiols of the CysXxxYyyCysHis heme-binding motif of the apocytochromes.

PMID:
10956006
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center