Format

Send to

Choose Destination
See comment in PubMed Commons below
Blood Cells Mol Dis. 2000 Jun;26(3):234-46.

Human bone marrow stromal cell: coexpression of markers specific for multiple mesenchymal cell lineages.

Author information

1
Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, University of South Florida, 12902 Magnolia Drive, Tampa, FL 33612-9497, USA. seshi@moffitt.usf.edu

Abstract

The role of hematopoietic stem cells in blood cell development is reasonably understood, whereas the identity and the function of bone marrow stromal cells are much less clear. Using stromal cells in bone marrow cultures of the Dexter type, a favorite medium for the study of hematopoiesis, we show that stromal cells actually represent a unique cell type. Conventional wisdom has held that stromal cells in Dexter cultures comprise a mixture of macrophages, hematopoietic cells, adipocytes, osteoblasts, fibroblasts, muscle cells, and endothelial cells. Our findings demonstrate that Dexter cultures consist of three cell types: macrophages ( approximately 35%), hematopoietic cells ( approximately 5%), and nonhematopoietic cells ( approximately 60%). We have purified the nonhematopoietic cells free of macrophages and hematopoietic cells to produce compelling evidence that they in fact represent a single cell type (multidifferentiated mesenchymal progenitor cell, MPC) which coexpresses genes specific for various mesenchymal cell lineages including adipocytes, osteoblasts, fibroblasts, and muscle cells. We further show that these multi- or pluridifferentiated MPCs are capable of supporting hematopoiesis by demonstrating the expression of several hematopoietic growth factors and extracellular matrix receptors including G-CSF, SCF, VCAM-1, ICAM-1, and ALCAM. Since the MPCs can be easily purified to near homogeneity (95%), they can be of value in enhancing engraftment of hematopoietic stem cells. Also, this new understanding of bone marrow stromal cells as "one cell with many different faces" promises to advance our knowledge of regulatory cellular interactions within bone marrow.

PMID:
10950944
DOI:
10.1006/bcmd.2000.0301
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center