Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2000 Nov 17;275(46):35820-4.

Domain III of elongation factor G from Thermus thermophilus is essential for induction of GTP hydrolysis on the ribosome.

Author information

1
Institute of Protein Research, Russian Academy of Sciences, 142292 Pushchino, Moscow Region, Russia.

Abstract

Two elongation factors (EF) EF-Tu and EF-G participate in the elongation phase during protein biosynthesis on the ribosome. Their functional cycles depend on GTP binding and its hydrolysis. The EF-Tu complexed with GTP and aminoacyl-tRNA delivers tRNA to the ribosome, whereas EF-G stimulates translocation, a process in which tRNA and mRNA movements occur in the ribosome. In the present paper we report that: (a) intrinsic GTPase activity of EF-G is influenced by excision of its domain III; (b) the EF-G lacking domain III has a 10(3)-fold decreased GTPase activity on the ribosome, whereas its affinity for GTP is slightly decreased; and (c) the truncated EF-G does not stimulate translocation despite the physical presence of domain IV, which is also very important for translocation. By contrast, the interactions of the truncated factor with GDP and fusidic acid-dependent binding of EF-G.GDP complex to the ribosome are not influenced. These findings indicate an essential contribution of domain III to activation of GTP hydrolysis. These results also suggest conformational changes of the EF-G molecule in the course of its interaction with the ribosome that might be induced by GTP binding and hydrolysis.

PMID:
10940297
DOI:
10.1074/jbc.M002656200
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center