Send to

Choose Destination
Neuroscience. 2000;99(2):351-61.

Visceral inputs to neurons in the anterior hypothalamus including those that project to the periaqueductal gray: a functional anatomical and electrophysiological study.

Author information

Department of Physiology, School of Medical Sciences, University of Bristol, BS8 1TD, Bristol, UK.


The present study was designed to examine peripheral, in particular noxious visceral, inputs to neurons in the hypothalamus that project to the midbrain periaqueductal gray. The induction of Fos protein was used to localize hypothalamic neurons that were activated by noxious visceral stimulation. This was combined with retrograde transport of fluorescent latex microspheres from identified "pressor" and "depressor" sites in the dorsolateral/lateral or ventrolateral columns of the periaqueductal gray. A second series of electrophysiological experiments examined the receptive field characteristics, including the incidence of viscerosomatic convergence, of neurons in the ventral part of the anterior hypothalamus. Noxious visceral stimulation (intraperitoneal acetic acid) induced Fos-like immunoreactivity in significantly more neurons in the hypothalamus than control stimuli (intraperitoneal saline and intravenous phenylephrine). Particularly high numbers of Fos-positive neurons were found in the paraventricular nucleus, the supraoptic nucleus and ventral regions of the anterior hypothalamus. When combined with retrograde tracing from "depressor" sites in the ventrolateral periaqueductal gray, the highest numbers of double-labelled neurons were localized in the paraventricular nucleus and the lateral area of the anterior hypothalamus. However, the regions that contained the greatest proportions of Fos-positive neurons that projected to "depressor" sites in the ventrolateral periaqueductal gray were the lateral area of the anterior hypothalamus and its rostral extension, the lateral preoptic area. Fewer double-labelled neurons were localized in the hypothalamus after retrograde transport from sites in the dorsolateral/lateral periaqueductal gray compared to the results obtained from injections of tracer in the ventrolateral periaqueductal gray. Furthermore, the numbers of Fos-positive hypothalamic neurons that projected to the dorsolateral/lateral periaqueductal gray were very similar in experimental and control animals. The electrophysiological study confirmed that a large proportion of neurons in and around the lateral area of the anterior hypothalamus can be driven by noxious visceral stimulation and demonstrated a high incidence of viscerosomatic convergence in these cells (66% of cells driven from somatic structures were also driven by electrical stimulation of the splanchnic nerve). Somatic receptive fields of these neurons were generally large, often including all four limbs and the face. The results of the functional anatomical and electrophysiological studies have identified neurons in an area of the ventral anterior hypothalamus that are a focus of nociceptive visceral input and which project to the midbrain periaqueductal gray, in particular to its ventrolateral column. These results are discussed in relation to the roles of the anterior hypothalamus and the different longitudinal columns of the periaqueductal gray in co-ordinating autonomic and sensory functions in response to visceral pain.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center