Format

Send to

Choose Destination
J Neurophysiol. 2000 Aug;84(2):1050-61.

Cornea-responsive medullary dorsal horn neurons: modulation by local opioids and projections to thalamus and brain stem.

Author information

1
Department of Surgery, Brown University School of Medicine/Rhode Island Hospital, Providence, Rhode Island 02903, USA.

Abstract

Previously, it was determined that microinjection of morphine into the caudal portion of subnucleus caudalis mimicked the facilitatory effects of intravenous morphine on cornea-responsive neurons recorded at the subnucleus interpolaris/caudalis (Vi/Vc) transition region. The aim of the present study was to determine the opioid receptor subtype(s) that mediate modulation of corneal units and to determine whether opioid drugs affected unique classes of units. Pulses of CO(2) gas applied to the cornea were used to excite neurons at the Vi/Vc ("rostral" neurons) and the caudalis/upper cervical spinal cord transition region (Vc/C1, "caudal" neurons) in barbiturate-anesthetized male rats. Microinjection of morphine sulfate (2.9-4.8 nmol) or the selective mu receptor agonist D-Ala, N-Me-Phe, Gly-ol-enkephalin (DAMGO; 1.8-15.0 pmol) into the caudal transition region enhanced the response in 7 of 27 (26%) rostral units to CO(2) pulses and depressed that of 10 units (37%). Microinjection of a selective delta ([D-Pen(2,5)] (DPDPE); 24-30 pmol) or kappa receptor agonist (U50488; 1.8-30.0 pmol) into the caudal transition region did not affect the CO(2)-evoked responses of rostral units. Caudal units were inhibited by local DAMGO or DPDPE but were not affected by U50,488H. The effects of DAMGO and DPDPE were reversed by naloxone (0.2 mg/kg iv). Intravenous morphine altered the CO(2)-evoked activity in a direction opposite to that of local DAMGO in 3 of 15 units, in the same direction as local DAMGO but with greater magnitude in 4 units, and in the same direction with equal magnitude as local DAMGO in 8 units. CO(2)-responsive rostral and caudal units projected to either the thalamic posterior nucleus/zona incerta region (PO/ZI) or the superior salivatory/facial nucleus region (SSN/VII). However, rostral units not responsive to CO(2) pulses projected only to SSN/VII and caudal units not responsive to CO(2) projected only to PO/ZI. It was concluded that the circuitry for opioid analgesia in corneal pain involves multiple sites of action: inhibition of neurons at the caudal transition region, by intersubnuclear connections to modulate rostral units, and by supraspinal sites. Local administration of opioid agonists modulated all classes of corneal units. Corneal stimulus modality was predictive of efferent projection status for rostral and caudal units to sensory thalamus and reflex areas of the brain stem.

PMID:
10938327
DOI:
10.1152/jn.2000.84.2.1050
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center