Format

Send to

Choose Destination
Nature. 2000 Jul 27;406(6794):430-5.

Chfr defines a mitotic stress checkpoint that delays entry into metaphase.

Author information

1
The Wistar Institute, Philadelphia, Pennsylvania 19104-4268, USA.

Abstract

Chemicals that target microtubules induce mitotic stress by affecting several processes that occur during mitosis. These processes include separation of the centrosomes in prophase, alignment of the chromosomes on the spindle in metaphase and sister-chromatid separation in anaphase. Many human cancers are sensitive to mitotic stress. This sensitivity is being exploited for therapy and implies checkpoint defects. The known mitotic checkpoint genes, which prevent entry into anaphase when the chromosomes are not properly aligned on the mitotic spindle, are, however, rarely inactivated in human cancer. Here we describe the chfr gene, which is inactivated owing to lack of expression or by mutation in four out of eight human cancer cell lines examined. Normal primary cells and tumour cell lines that express wild-type chfr exhibited delayed entry into metaphase when centrosome separation was inhibited by mitotic stress. In contrast, the tumour cell lines that had lost chfr function entered metaphase without delay. Ectopic expression of wild-type chfr restored the cell cycle delay and increased the ability of the cells to survive mitotic stress. Thus, chfr defines a checkpoint that delays entry into metaphase in response to mitotic stress.

Comment in

PMID:
10935642
DOI:
10.1038/35019108
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center