Format

Send to

Choose Destination
Mol Ther. 2000 Jan;1(1):31-8.

Efficient transduction of nondividing cells by optimized feline immunodeficiency virus vectors.

Author information

1
Program in Immunology, Stanford University Medical Center, California 94305-5332, USA. curran@leland.stanford.edu

Abstract

Second- and third-generation three-plasmid vector systems, termed FELIX, were constructed from feline immunodeficiency virus (FIV). To enhance vector production, the weak FIV long terminal repeat promoter was replaced with the human cytomegalovirus enhancer/promoter. To construct a minimal system in which Gag-Pol was the only viral protein present, the cytoplasmic transport element was used in place of the FIV Rev-RRE system to facilitate nuclear export of Gag-Pol and the transfer vector. Unconcentrated vector titers routinely exceeded 1 x 10(6) IU/mL for most constructs tested. Second- and optimized third-generation vectors were capable of efficiently infecting G1/S- and G2/M-arrested cells. FIV-based FELIX vectors transduced human dendritic cells, hepatocytes, and aortic smooth muscle with efficiencies similar to that of a control 3T3 cell line. All three of these primary cell types were transducible by both the second- and third-generation FELIX vectors, demonstrating that FIV Gag-Pol alone contains the determinants necessary for transduction of primary cells. In cross-packaging tests, we observed that HIV Gag-Pol does not substantially package FIV vectors; consequently, use of such vectors in human immunodeficiency virus-infected cells should not lead to efficient mobilization of the inserted gene. Thus, this FIV-based vector system offers high efficiency and stable delivery of genes to numerous nondividing and primary cell types, opening new avenues for biological inquiry into normal human cells.

PMID:
10933909
DOI:
10.1006/mthe.1999.0007
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center