Format

Send to

Choose Destination
Plant J. 2000 Jul;23(2):171-82.

The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana.

Author information

1
Laboratory of Molecular Biology and Biotechnology, Research Center of Medicinal Resources, Faculty of Pharmaceutical Sciences, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan.

Abstract

To investigate the uptake and long-distance translocation of sulphate in plants, we have characterized three cell-type-specific sulphate transporters, Sultr1;1, Sultr2;1 and Sultr2;2 in Arabidopsis thaliana. Heterologous expression in the yeast sulphate transporter mutant indicated that Sultr1;1 encodes a high-affinity sulphate transporter (Km for sulphate 3.6 +/- 0.6 microM), whereas Sultr2;1 and Sultr2;2 encode low-affinity sulphate transporters (Km for sulphate 0.41 +/- 0.07 mM and >/= 1.2 mM, respectively). In Arabidopsis plants expressing the fusion gene construct of the Sultr1;1 promoter and green fluorescent protein (GFP), GFP was localized in the lateral root cap, root hairs, epidermis and cortex of roots. beta-glucuronidase (GUS) expressed with the Sultr2;1 promoter was specifically accumulated in the xylem parenchyma cells of roots and leaves, and in the root pericycles and leaf phloem. Expression of the Sultr2;2 promoter-GFP fusion gene showed specific localization of GFP in the root phloem and leaf vascular bundle sheath cells. Plants continuously grown with low sulphate concentrations accumulated high levels of Sultr1;1 and Sultr2;1 mRNA in roots and Sultr2;2 mRNA in leaves. The abundance of Sultr1;1 and Sultr2;1 mRNA was increased remarkably in roots by short-term stress caused by withdrawal of sulphate. Addition of selenate in the sulphate-sufficient medium increased the sulphate uptake capacity, tissue sulphate content and the abundance of Sultr1;1 and Sultr2;1 mRNA in roots. Concomitant decrease of the tissue thiol content after selenate treatment was consistent with the suggested role of glutathione (GSH) as a repressive effector for the expression of sulphate transporter genes.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center