Send to

Choose Destination
Z Naturforsch C J Biosci. 2000 May-Jun;55(5-6):361-72.

Photoinactivation and protection of glycolate oxidase in vitro and in leaves.

Author information

Botanisches Institut, Goethe-Universität, Frankfurt am Main, Germany.


Glycolate oxidase that was partially purified from pea leaves was inactivated in vitro by blue light in the presence of FMN. Inactivation was greatly retarded in the absence of O2. Under aerobic conditions H2O2 was formed. The presence of catalase, GSH or dithiothreitol protected glycolate oxidase against photoinactivation. Less efficient protection was provided by ascorbate, histidine, tryptophan or EDTA. The presence of superoxide dismutase or of hydroxyl radical scavengers had no, or only minor, effects. Glutathione suppressed H2O2 accumulation and was oxidized in the presence of glycolate oxidase in blue light. Glycolate oxidase was also inactivated in the presence of a superoxide-generating system or by H2O2 in darkness. In intact leaves photoinactivation of glycolate oxidase was not observed. However, when catalase was inactivated by the application of 3-amino-1,2,4-triazole or depleted by prolonged exposure to cycloheximide a strong photoinactivation of glycolate oxidase was also seen in leaves. In vivo blue and red light were similarly effective. Furthermore, glycolate oxidase was photoinactivated in leaves when the endogenous GSH was depleted by the application of buthionine sulfoximine. Both catalase and antioxidants, in particular GSH, appear to be essential for the protection of glycolate oxidase in the peroxisomes in vivo.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center