Send to

Choose Destination
See comment in PubMed Commons below
J Immunol. 2000 Aug 15;165(4):1965-75.

CD11c+ eosinophils in the murine thymus: developmental regulation and recruitment upon MHC class I-restricted thymocyte deletion.

Author information

Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8603 Université Paris V, Paris, France.


Eosinophils are bone marrow-derived cells released into the circulation during hypersensitivity reactions and parasitic infections. Under normal conditions most eosinophils are tissue bound, where their physiologic role is unclear. During in situ analysis of the thymic microenvironment for CD11c+ dendritic cell subpopulations (APC critical in the process of thymic negative selection) a discrete population of CD11b/CD11c double-positive cells concentrated in the cortico-medullary region of young mice was detected. Thymic CD11c+ cells were isolated, and the CD11b+ subpopulation (CD44high, class IIlow, CD11cint) was identified as mature eosinophils based on: scatter characteristics, major basic protein mRNA expression, and eosinophilic granules. They are hypodense, release high levels of superoxide anion, and express CD25, CD69, and mRNA for IL-4 and IL-13, but not GM-CSF or IL-5, suggesting a distinct state of activation. Thymic eosinophils are preferentially recruited during the neonatal period; absolute numbers increased 10-fold between 7-14 days to reach parity with dendritic cells before diminishing. In a model of acute negative selection, eosinophil numbers were increased 2-fold 6 h after cognate peptide injection into MHC class I-restricted female H-Y TCR transgenic mice. In both peptide-treated female and negatively selecting male H-Y TCR mice, clusters of apoptotic bodies were associated with eosinophils throughout the thymus. Our data demonstrate a temporal and spatial association between eosinophil recruitment and class I-restricted selection in the thymus, suggesting an immunomodulatory role for eosinophils under nonpathological conditions.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center