Send to

Choose Destination
See comment in PubMed Commons below
Brain Res. 2000 Jul 28;872(1-2):242-9.

Permanent and temporary inactivation of the hippocampus impairs T-maze footshock avoidance acquisition and retention.

Author information

Geriatric Research Education and Clinical Center (GRECC), VA Medical Center (151/JC) 915 N. Grand Blvd., St. Louis, MO 63109, USA.


The hippocampus is widely recognized as playing an important role in learning and memory. Lesions of the hippocampus can disrupt spatial navigational learning and memory and injection of drugs into the hippocampus can affect both spatial navigational and nonspatial tasks. In the current studies we tested the effects of bilateral of electrolytic lesions and reversible inactivation of the hippocampus on acquisition and retention of T-maze footshock avoidance conditioning. Electrolytic lesions, which destroyed 31+/-0.04% of the hippocampus, significantly impaired acquisition and retention for T-maze footshock avoidance. No differences were found in motivation to avoid shock, open field activity, or foot shock sensitivity between lesion and control groups. Temporary inactivation of the hippocampus with lidocaine administered immediately before training disrupted acquisition and retention for T-maze footshock avoidance. Temporary hippocampal inactivation performed just prior to retention testing and post-training inactivation in mice trained to first avoidance had no effect on retention. However, temporary post-training inactivation in 'undertrained' (enough trials to remember 1 week later if treated with saline, but not allowed to make the avoidance response) mice impaired retention. The current findings indicate that the hippocampus plays an important role in learning and memory processing in the aversive T-maze paradigm.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center