Send to

Choose Destination
Mol Cell Neurosci. 2000 Aug;16(2):141-56.

Abnormal polarization and axon outgrowth in retinal ganglion cells lacking the POU-domain transcription factor Brn-3b.

Author information

Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA.


The POU domain transcription factor Brn-3b (also called Brn-3.2) is essential for the normal development of retinal ganglion cells (RGCs) in the mouse. Without Brn-3b, RGCs commit to their fate and migrate to the ganglion cell layer, but most cells die during fetal development. An earlier report (L. Gan et al., 1999, Dev. Biol. 210, 469-480) suggested that cell death was caused by abnormal axon formation. Here, we use retinal explants from wild-type and mutant embryos to show that brn-3b-deficient RGCs are not properly polarized and tend to form dendrites rather than axons. Compared with wild-type explants, neurites of RGCs from brn-3b-deficient retinal explants grew slower, were shorter, and did not fasciculate properly. Mutant neurites had more microtubules than wild-type controls, and the arrangement of microtubules and neurofilaments was characteristic of dendrites rather than axons. Neurites from individual mutant RGCs displayed abnormal polarity and had dendrite-like branches extending outward from their main axis. Most mutant RGCs exhibited abnormal migratory behavior, and their neurites labeled intensely with the dendrite marker MAP-2. A small number of mutant RGCs were not migratory, and their neurites were longer and labeled positively for the axon marker tau-1, suggesting that some RGCs were not as severely affected by the absence of Brn-3b as others. Although tau-1 was not observed in most mutant neurites, it did accumulate in mutant cell bodies, implying that the absence of Brn-3b caused a defect in axon transport. Thus, Brn-3b appears to control the activity of genes that function in establishing RGC polarity, and without Brn-3b, RGCs cannot extend normal axons.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center