Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2000 Oct 20;275(42):32516-22.

Vanadate induces p53 transactivation through hydrogen peroxide and causes apoptosis.

Author information

Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA.


Vanadium is a metal widely distributed in the environment. Although vanadate-containing compounds exert potent toxic effects on a wide variety of biological systems, the mechanisms controlling vanadate-induced adverse effects remain to be elucidated. The present study investigated the vanadate-induced p53 activation and involvement of reactive oxygen species (ROS) in p53 activation as well as the role of p53 in apoptosis induction by vanadate. Exposure of mouse epidermal JB6 cells to vanadate led to transactivation of p53 activity in a time- and dose-dependent manner. It also caused mitochondrial damage, apoptosis, and generated ROS. Scavenging of vanadate-induced H(2)O(2) by N-acetyl-l-cysteine (a general antioxidant) or catalase (a specific H(2)O(2) inhibitor), or the chelation of vanadate by deferoxamine, resulted in inhibition of p53 activation and cell mitochondrial damage. In contract, an increase in H(2)O(2) generation in response to superoxide dismutase or NADPH enhanced these effects caused by vanadate. Furthermore, vanadate-induced apoptosis occurred in cells expressing wild-type p53 (p53+/+) but was very weak in p53-deficient (p53-/-) cells. These results demonstrate that vanadate induces p53 activation mainly through H(2)O(2) generation, and this activation is required for vanadate-induced apoptosis.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center