Send to

Choose Destination
Cancer Res. 2000 Jul 15;60(14):3813-22.

In vivo cancer gene therapy by adenovirus-mediated transfer of a bifunctional yeast cytosine deaminase/uracil phosphoribosyltransferase fusion gene.

Author information

Transgene S.A. Strasbourg, France.


Direct transfer of prodrug activation systems into tumors was demonstrated to be an attractive method for the selective in vivo elimination of tumor cells. However, most current suicide gene therapy strategies are still handicapped by a poor efficiency of in vivo gene transfer and a limited bystander cell killing effect. In this study, we describe a novel and highly potent suicide gene derived from the Saccharomyces cerevisiae cytosine deaminase (FCY1) and uracil phosphoribosyltransferase genes (FUR1). This suicide gene, designated FCU1, encodes a bifunctional chimeric protein that combines the enzymatic activities of FCY1 and FUR1 and efficiently catalyzes the direct conversion of 5-FC, a nontoxic antifungal agent, into the toxic metabolites 5-fluorouracil and 5-fluorouridine-5'monophosphate, thus bypassing the natural resistance of certain human tumor cells to 5-fluorouracil. Unexpectedly, although the uracil phosphoribosyltransferase activity of FCU1 was equivalent to that encoded by FUR1, its cytosine deaminase activity was 100-fold higher than the one encoded by FCY1. As a consequence, tumor cells transduced with an adenovirus expressing FCU1 (Ad-FCU1) were sensitive to concentrations of 5-FC 1000-fold lower than the ones used for cells transduced with a vector expressing FCY1 (Ad-FCY1). Furthermore, bystander cell killing was also more effective in cells transduced with Ad-FCU1 than in cultures infected with Ad-FCY1 or Ad-FUR1, alone or in combination. Finally, intratumoral injections of Ad-FCU1 into allo- or xenogeneic tumors implanted s.c. into mice, with concomitant systemic administration of 5-FC, led to substantial delays in tumor growth. These unique properties make of the FCU1/5-FC prodrug activation system a novel and powerful candidate for cancer gene therapy strategies.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center