Electrochemiluminescence of ruthenium (II) tris(bipyridine) encapsulated in sol-gel glasses

Anal Chem. 2000 Jul 1;72(13):2914-8. doi: 10.1021/ac9913208.

Abstract

The electrogenerated chemiluminescence (ECL) of Ru(bpy)3 2+ and tripropylamine, tributylamine, triethylamine, trimethylamine, or sodium oxalate encapsulated within sol-gel-derived silica monoliths have been investigated using an immobilized ultramicroelectrode assembly. The major purpose of this study was to investigate the role of the reductant on the magnitude and stability of the ECL in this solid host matrix. For gel-entrapped Ru(bpy)3 2-/tertiary amines, the shape and intensity of the ECL-potential curves were highly dependent on scan rate. At 10 mV/s, the ECL intensity was ca. 6-fold higher relative to that observed at 500 mV/s. When the ECL acquired at low scan rates was normalized by that obtained in solution under similar conditions, a value of 0.03-0.06 was obtained. In direct contrast, the ECL of the Ru(bpy)3 2+-oxalate system showed little dependence on scan rate, and the ECL was ca. 65-75% of that measured in solution. These differences can be attributed to differences in rotational and translational mobility between the reductants (amines vs oxalate) trapped in this porous solid host For both systems, the ECL was found to be stable upon continuous oxidation or upon drying the gels in a high-humidity environment for over 10 days.