Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2000 Oct 6;275(40):31211-8.

Down-regulation of the PSI-F subunit of photosystem I (PSI) in Arabidopsis thaliana. The PSI-F subunit is essential for photoautotrophic growth and contributes to antenna function.

Author information

  • 1Plant Biochemistry Laboratory, Department of Plant Biology, the Royal Veterinary and Agricultural University, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Denmark.


The PSI-F subunit of photosystem I is a transmembrane protein with a large lumenal domain. The role of PSI-F was investigated in Arabidopsis plants transformed with an antisense construct of the psaF cDNA. Several plant lines with reduced amounts of the PSI-F subunit were generated. Many of the transgenic plants died, apparently because they were unable to survive without the PSI-F subunit. Plants with 5% of PSI-F were capable of photoautotrophic growth but were much smaller than wild-type plants. The plants suffered severely under normal growth conditions but recovered somewhat in the dark indicating chronic photoinhibition. Photosystem I lacking PSI-F was less stable, and the stromal subunits PSI-C, PSI-D, and PSI-E were present in lower amounts than in wild type. The lack of PSI-F resulted in an inability of light-harvesting complex I-730 to transfer energy to the P700 reaction center. In thylakoids deficient in PSI-F, the steady state NADP(+) reduction rate was only 10% of the wild-type levels indicating a lower efficiency in oxidation of plastocyanin. Surprisingly, the lack of PSI-F also gave rise to disorganization of the thylakoids. The strict arrangement in grana and stroma lamellae was lost, and instead a network of elongated and distorted grana was observed.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center