Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2000 Sep 22;275(38):29847-56.

Assembly of partial TFIID complexes in mammalian cells reveals distinct activities associated with individual TATA box-binding protein-associated factors.

Author information

  • 1Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA.


The TATA box-binding protein (TBP) and TBP-associated factors (TAF(II)s) compose the general transcription factor TFIID. The TAF(II) subunits mediate activated transcription by RNA polymerase II by interacting directly with site-specific transcriptional regulators. TAF(II)s also participate in promoter recognition by contacting core promoter elements in the context of TFIID. To further dissect the contribution of individual TAF(II) subunits to mammalian TFIID function, we employed a vaccinia virus-based protein expression system to study protein-protein interactions and complex assembly. We identified the domains of human (h) TAF(II)130 required for TAF(II)-TAF(II) interactions and formation of a complex with hTBP, hTAF(II)100, and hTAF(II)250. Functional analysis of partial TFIID complexes formed in vivo indicated that hTAF(II)130 was required for transcriptional activation by Sp1 in vitro. DNase I footprinting experiments demonstrated that purified hTBP/hTAF(II)250 complex reconstituted with or without additional TAF(II)s was significantly reduced for TATA box binding (as much as 9-fold) compared with free hTBP. By contrast, hTAF(II)130 stabilized binding of hTBP to the TATA box, whereas hTAF(II)100 had little effect. Thus, our biochemical analysis supports the notion that TAF(II)s possess distinct functions to regulate the activity of TFIID.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center