Send to

Choose Destination
See comment in PubMed Commons below
J Exp Med. 2000 Jul 3;192(1):99-104.

Negative regulation of T cell proliferation and interleukin 2 production by the serine threonine kinase GSK-3.

Author information

  • 1Ontario Cancer Institute, Department of Medical Biophysics, Toronto, Ontario M5G 2M9, Canada.


Glycogen synthase kinase (GSK)-3 is a protein serine/threonine kinase that regulates differentiation and cell fate in a variety of organisms. This study examined the role of GSK-3 in antigen-specific T cell responses. Using resting T cells from P14 T cell receptor (TCR)-transgenic mice (specific for the lymphocytic choriomeningitis virus and H-2D(b)), we demonstrated that GSK-3beta was inactivated by serine phosphorylation after viral peptide-specific stimulation in vitro. To further investigate the role of GSK-3, we have generated a retroviral vector that expresses a constitutively active form of GSK-3beta that has an alanine substitution at the regulatory amino acid, serine 9 (GSK-3betaA9). Retroviral transduction of P14 TCR-transgenic bone marrow stem cells, followed by reconstitution, led to the expression of GSK-3betaA9 in bone marrow chimeric mice. T cells from chimeric mice demonstrate a reduction in proliferation and interleukin (IL)-2 production. In contrast, in vitro assays done in the presence of the GSK-3 inhibitor lithium led to dramatically prolonged T cell proliferation and increased IL-2 production. Furthermore, in the presence of lithium, we show that nuclear factor of activated T cells (NF-AT)c remains in the nucleus after antigen-specific stimulation of T cells. Together, these data demonstrate that GSK-3 negatively regulates the duration of T cell responses.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center