Format

Send to

Choose Destination
J Biomed Mater Res. 2000 Sep 15;51(4):586-95.

Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes.

Author information

1
Department of Orthopaedic Surgery, Good Samaritan Hospital, Johns Hopkins University, Professional Office Building, 5601 Loch Raven Boulevard, Baltimore, Maryland 21239, USA.

Abstract

The search for biocompatible materials that can support the growth and phenotypic expression of osteoblasts and chondrocytes is a major challenge in the application of tissue engineering techniques for the repair of bone and cartilage defects. Chitosan, a copolymer of glucosamine and N-acetylglucosamine, may provide an answer to this search. Chitosan is the deacetylated product of chitin, a ubiquitous biopolymer found in the exoskeleton of insects and marine invertebrates. Little is known about the utility of chitosan in propagating human osteoblasts and chondrocytes. In this study, we test the hypothesis that chitosan promotes the survival and function of osteoblasts and chondrocytes. Chitosan (4%, w/v in 2% HAc) was coated onto plastic coverslips that had been fitted into 24-well plates. Human osteoblasts and articular chondrocytes were seeded on either uncoated or chitosan-coated coverslips at 1 x 10(5)/cells per well. Cultures were incubated at 37 degrees C, 5% CO(2) for a period of 7 days. Cell viability was assessed at that time using a fluorescent molecular probe. The phenotypic expression of osteoblasts and chondrocytes was analyzed by reverse transcriptase-polymerase chain reaction and immunocytochemistry. Osteoblasts and chondrocytes appeared spherical and refractile on chitosan-coated coverslips. In contrast, greater than 90% of cells on plastic coverslips were elongated and spindle shaped after 7 days of culture. Similar to cells propagated on uncoated control wells, greater than 90% of human osteoblasts and chondrocytes propagated on chitosan remained viable. Human osteoblasts propagated on chitosan films continued to express collagen type I whereas chondrocytes expressed collagen type II and aggrecan, as shown by reverse transcriptase-polymerase chain reaction analysis and immunostaining. The present in vitro work demonstrates the biocompatibility of chitosan as a substrate for the growth and continued function of human osteoblasts and chondrocytes. Chitosan may have potential use as a tissue engineering tool for the repair of osseous and chondral defects.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center