Format

Send to

Choose Destination
Immunopharmacology. 2000 May;47(2-3):85-118.

Mycophenolate mofetil and its mechanisms of action.

Author information

1
SurroMed Incorporated, 1060 E. Meadow Circle, Palo Alto, CA 94303, USA.

Abstract

Mycophenolate mofetil (MMF, CellCept(R)) is a prodrug of mycophenolic acid (MPA), an inhibitor of inosine monophosphate dehydrogenase (IMPDH). This is the rate-limiting enzyme in de novo synthesis of guanosine nucleotides. T- and B-lymphocytes are more dependent on this pathway than other cell types are. Moreover, MPA is a fivefold more potent inhibitor of the type II isoform of IMPDH, which is expressed in activated lymphocytes, than of the type I isoform of IMPDH, which is expressed in most cell types. MPA has therefore a more potent cytostatic effect on lymphocytes than on other cell types. This is the principal mechanism by which MPA exerts immunosuppressive effects. Three other mechanisms may also contribute to the efficacy of MPA in preventing allograft rejection and other applications. First, MPA can induce apoptosis of activated T-lymphocytes, which may eliminate clones of cells responding to antigenic stimulation. Second, by depleting guanosine nucleotides, MPA suppresses glycosylation and the expression of some adhesion molecules, thereby decreasing the recruitment of lymphocytes and monocytes into sites of inflammation and graft rejection. Third, by depleting guanosine nucleotides MPA also depletes tetrahydrobiopterin, a co-factor for the inducible form of nitric oxide synthase (iNOS). MPA therefore suppresses the production by iNOS of NO, and consequent tissue damage mediated by peroxynitrite. CellCept(R) suppresses T-lymphocytic responses to allogeneic cells and other antigens. The drug also suppresses primary, but not secondary, antibody responses. The efficacy of regimes including CellCept(R) in preventing allograft rejection, and in the treatment of rejection, is now firmly established. CellCept(R) is also efficacious in several experimental animal models of chronic rejection, and it is hoped that the drug will have the same effect in humans.

PMID:
10878285
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center