Format

Send to

Choose Destination
J Biol Chem. 2000 Sep 29;275(39):30335-43.

Nonsaturable binding indicates clustering of tau on the microtubule surface in a paired helical filament-like conformation.

Author information

1
Max-Planck-Unit for Structural Molecular Biology c/o DESY, Notkestrasse 85, D-22607 Hamburg, Germany.

Abstract

Tau protein modulates microtubule dynamics and forms insoluble aggregates in Alzheimer's disease. Because there is a discrepancy between reported affinities of Tau to microtubules, we determined the interaction over a wide concentration range using a sensitive enzyme-linked immunosorbent assay. We found that the interaction is biphasic and not monophasic as assumed earlier. The first binding phase is typical for identical and noninteracting binding sites, with dissociation constants around 0.1 micrometer and stoichiometries around 0.2 Tau/tubulin dimer. Surprisingly, the second phase is nonsaturable and shows a nearly linear increase in bound Tau versus free Tau for free Tau concentrations higher than 2 micrometer. The slope is proportional to the microtubule concentration. From this we define an overloading parameter with values around 50 micrometer. The influence of Tau isoform, phosphorylation, and dimerization on both phases was investigated. Remarkably the overloading of Tau on microtubules leads to a thioflavin S fluorescence increase reminiscent of that seen with Tau aggregated into Alzheimer paired helical filaments. Because polyanions stimulate Tau aggregation and because the C-terminal domain of tubulin is polyanionic, we suggest that an early conformational change in Tau leading to paired helical filament aggregation occurs right on the microtubule surface.

PMID:
10869348
DOI:
10.1074/jbc.M002590200
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center