Send to

Choose Destination
See comment in PubMed Commons below
J Exp Biol. 2000 Jul;203(Pt 13):1947-62.

Permeation through the CFTR chloride channel.

Author information

  • 1Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322-3110, USA.


The cystic fibrosis transmembrane conductance regulator (CFTR) protein forms a Cl(-) channel found in the plasma membranes of many epithelial cells, including those of the kidney, gut and conducting airways. Mutation of the gene encoding CFTR is the primary defect in cystic fibrosis, a disease that affects approximately 30 000 individuals in the United States alone. Alteration of CFTR function also plays an important role in the pathophysiology of secretory diarrhea and polycystic kidney disease. The basic mechanisms of permeation in this channel are not well understood. It is not known which portions of the protein contribute to forming the pore or which amino acid residues in those domains are involved in the biophysical processes of ion permeation. In this review, I will discuss (i) the present understanding of ion transport processes in the wild-type CFTR channel, (ii) the experimental approaches currently being applied to investigate the pore, and (iii) a proposed structure that takes into account the present data on mechanisms of ion selectivity in the CFTR channel and on blockade of the pore by open-channel blockers.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center