Send to

Choose Destination
See comment in PubMed Commons below
Cancer Res. 2000 Jun 1;60(11):3072-80.

Expression of polysialic acid and STX, a human polysialyltransferase, is correlated with tumor progression in non-small cell lung cancer.

Author information

  • 1Department of Thoracic Surgery, Faculty of Medicine, Kyoto University, Japan.


Polysialic acid (PSA) is a carbohydrate composed of a linear homopolymer of alpha-2-8-linked sialic acid residues and is mainly attached to the neural cell adhesion molecule (NCAM). Because of the large negative charge of PSA, presence of PSA attenuates the adhesive property of NCAM and increases the cellular motility. PSA expression on NCAM is developmentally regulated, and PSA plays important roles in formation and remodeling of the neural system through regulation of the adhesive property of NCAM. Expression of the polysialated form of NCAM has been also demonstrated in some malignant tumors, such as Wilms' tumor and small cell lung cancer. Despite the possible importance as an onco-developmental antigen, however, significance of PSA expression in most malignant tumors has not been revealed. Therefore, PSA expression in non-small cell lung cancer was assessed in the present study. PSA was expressed only in 5 (20.8%) of 24 pathological stage I cases, whereas it was expressed in most stage IV cases (76.8%, 11 of 14 cases). PSA expression was correlated with nodal metastasis and distant metastasis, but not with local extent of the primary tumor. Next, expression of polysialyltransferase genes (PST and STX genes) which controlled formation of PSA, was examined. The PST gene was constantly expressed in both normal lung tissue and tumor tissue of all cases. In contrast, the STX gene was not expressed in normal lung tissue of any case, and STX gene expression in tumor tissue was closely correlated with tumor progression. The STX gene was expressed only in 1 (4.2%) of 24 stage I cases, whereas it was expressed in most stage IV cases (85.7%, 12 of 14 cases). These results suggested that the PSA and STX genes could be new targets of cancer therapy as well as important clinical markers.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center