Format

Send to

Choose Destination

Migration of polyethylene particles around stable implants in an animal model.

Author information

1
Skeletech, Inc., Bothell, WA 98021, USA.

Abstract

The aim of this study was to test the hypothesis that a tight seal between bone and implant will eliminate the avenue of particle migration around stable implants. Three types of implants were used in rabbits (polished press-fit Ti-6Al-4V or plasma-sprayed hydroxyapatite [HA]-coated Ti-6Al-4V) or doughy stage polymethyl methacrylate (PMMA). Implants were placed in the condylar notch. Each animal received an intra-articular injection of high density polyethylene (PE) particles (10(8) in 0.4 mL; mean size 4.7 microns) at 4 and 6 weeks postoperatively. Eight weeks postoperatively, peri-implant tissues were examined for PE particles and osteolysis. In all cases, intracellular PE particles were seen at the bone-implant interface and within marrow. No osteolysis was observed. Bone apposition was determined by computerized image analysis. There was no significant difference in the percentage of bone apposition (+/- SD) among the three groups of implants: Ti-6Al-4V (68% +/- 19%), HA-coated Ti-6Al-4V (70% +/- 10%), and PMMA (59% +/- 12%). These results indicate that a polished Ti-6Al-4V surface is as effective as PMMA or HA coating in limiting migration of PE particles around stable osseointegrated implants in rabbits.

PMID:
10847967
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center