Format

Send to

Choose Destination
J Insect Physiol. 2000 Sep 1;46(9):1321-1329.

Overwintering strategy in Pyrrhocoris apterus (Heteroptera): the relations between life-cycle, chill tolerance and physiological adjustments.

Author information

1
Institute of Entomology, Academy of Sciences of the Czech Republic, Branisovská 31, 370 05, Ceské Budejovice, Czech Republic

Abstract

Seasonal dynamics of ecophysiological parameters are described which are relevant to overwintering in field-collected adults of a Czech population of the red firebug, Pyrrhocoris apterus. Five life-cycle phases were distinguished using the duration of pre-oviposition period as a criterion: reproductive activity (spring-early summer), intensification of reproductive diapause (RD) (peak of summer), maintenance of RD (late summer-early autumn), termination of RD (late autumn-early winter), and low temperature quiescence (LTQ) (winter). The supercooling capacity and chill tolerance (c.t.) increased simultaneously with the termination of RD and all three processes were triggered/conditioned by autumnal decrease in ambient temperatures. Maximum supercooling capacity and c.t. 'outlived' the end of diapause and persisted throughout the LTQ state. The limits of c.t. were estimated as -15 degrees C/1-2 weeks for 50% survival. Ribitol, sorbitol, arabinitol, and mannitol were accumulated in the winter-sampled insects. Relatively low concentrations of polyols (dominating ribitol reached ca. 1% FW) indicate that they do not function as colligative cryoprotectants. However, because their seasonal occurrence coincided with the highest c.t., their non-colligative cryoprotectant effects would merit further study. Although the overwintering microhabitat of P. apterus is buffered, the temperatures may fall to -13 degrees C during exceptionally cold winters and thus, the parameters of c.t. seem to be just appropriately tuned to the local overwintering conditions.

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center