Send to

Choose Destination
Prog Neurobiol. 2000 Oct;62(3):215-49.

Mechanisms underlying hypoxia-induced neuronal apoptosis.

Author information

Department of Pediatrics, Section of Critical Care, Yale University School of Medicine, New Haven, CT 06520, USA.


In vivo models of cerebral hypoxia-ischemia have shown that neuronal death may occur via necrosis or apoptosis. Necrosis is, in general, a rapidly occurring form of cell death that has been attributed, in part, to alterations in ionic homeostasis. In contrast, apoptosis is a delayed form of cell death that occurs as the result of activation of a genetic program. In the past decade, we have learned considerably about the mechanisms underlying apoptotic neuronal death following cerebral hypoxia-ischemia. With this growth in knowledge, we are coming to the realization that apoptosis and necrosis, although morphologically distinct, are likely part of a continuum of cell death with similar operative mechanisms. For example, following hypoxia-ischemia, excitatory amino acid release and alterations in ionic homeostasis contribute to both necrotic and apoptotic neuronal death. However, apoptosis is distinguished from necrosis in that gene activation is the predominant mechanism regulating cell survival. Following hypoxic-ischemic episodes in the brain, genes that promote as well as inhibit apoptosis are activated. It is the balance in the expression of pro- and anti-apoptotic genes that likely determines the fate of neurons exposed to hypoxia. The balance in expression of pro- and anti-apoptotic genes may also account for the regional differences in vulnerability to hypoxic insults. In this review, we will examine the known mechanisms underlying apoptosis in neurons exposed to hypoxia and hypoxia-ischemia.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center