Format

Send to

Choose Destination
See comment in PubMed Commons below
Biophys J. 2000 Jun;78(6):3195-207.

Comparison of the solution conformation and dynamics of antifreeze glycoproteins from Antarctic fish.

Author information

  • 1Division of Molecular Structure, National Institute for Medical Research, London NW7 1AA, United Kingdom. alane@nimr.mrc.ac.uk

Abstract

The (1)H- and (13)C-NMR spectra of antifreeze glycoprotein fractions 1-5 from Antarctic cod have been assigned, and the dynamics have been measured using (13)C relaxation at two temperatures. The chemical shifts and absence of non-sequential (1)H-(1)H NOEs are inconsistent with a folded, compact structure. (13)C relaxation measurements show that the protein has no significant long-range order, and that the local correlation times are adequately described by a random coil model. Hydroxyl protons of the sugar residues were observed at low temperature, and the presence of exchange-mediated ROEs to the sugar indicate extensive hydration. The conformational properties of AFGP1-5 are compared with those of the previously examined 14-mer analog AFGP8, which contains proline residues in place of some alanine residues (Lane, A. N., L. M. Hays, R. E. Feeney, L. M. Crowe, and J. H. Crowe. 1998. Protein Sci. 7:1555-1563). The infrared (IR) spectra of AFGP8 and AFGP1-5 in the amide I region are quite different. The presence of a wide distribution of backbone torsion angles in AFGP1-5 leads to a rich spectrum of frequencies in the IR spectrum, as interconversion among conformational states is slow on the IR frequency time scale. However, these transitions are fast on the NMR chemical shift time scales. The restricted motions for AFGP8 may imply a narrower distribution of possible o, psi angles, as is observed in the IR spectrum. This has significance for attempts to quantify secondary structures of proteins by IR in the presence of extensive loops.

PMID:
10827996
PMCID:
PMC1300901
DOI:
10.1016/S0006-3495(00)76856-1
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center