Format

Send to

Choose Destination
Eur J Biochem. 2000 Jun;267(11):3315-22.

Structure and chromosomal localization of human and mouse genes for hematopoietic prostaglandin D synthase. Conservation of the ancestral genomic structure of sigma-class glutathione S-transferase.

Author information

1
Department of Molecular Behavioral Biology, Osaka Bioscience, Institute, Osaka, Japan.

Abstract

Hematopoietic prostaglandin D synthase (H-PGDS) is the key enzyme for the production of the D and J series of prostanoids, and the first recognized vertebrate homolog of sigma-class glutathione S-transferase (GST). We isolated the genes and cDNAs for human and mouse H-PGDSs. The human and mouse cDNAs contained a coding region corresponding to 199 amino-acid residues with calculated molecular masses of 23 343 and 23 226, respectively. Both H-PGDS proteins recombinantly expressed in Escherichia coli showed bifunctional activities for PGDS and GST, and had almost the same catalytic properties as the rat enzyme. Northern analyses demonstrated that the H-PGDS genes were expressed in a highly species-specific manner. Whereas the human gene was widely distributed, in contrast, the mouse gene was detected only in samples from oviduct and skin. By fluorescence in situ hybridization, the chromosomal localization of the human and mouse H-PGDS genes were mapped to 4q21-22 and 3D-E, respectively. The human and mouse H-PGDS genes spanned approximately 41 and 28 kb, respectively, and consisted of six exons divided by five introns. The exon/intron boundaries of both genes were completely identical to those of the sigma-class GST subfamily, although the amino-acid sequences of the latter were only 17.0-21.5% identical to those of either H-PGDS. These findings suggest that the H-PGDS genes evolved from the same ancestral gene as the members of the sigma-class GST family.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center