Send to

Choose Destination
Life Sci. 2000 Apr 14;66(21):2113-21.

A novel effect of polymorphonuclear leukocytes in the facilitation of angiogenesis.

Author information

Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan.


The purpose of this study was to examine whether the adhesion of polymorphonuclear leukocytes (PMNs) to endothelial cells and/or reactive oxygen species (ROS) released from PMNs are responsible for inducing angiogenesis. Angiogenesis was assessed by tube formation using endothelial cells obtained from bovine thoracic aorta (BAECs) grown on a layer of collagen type I. Addition of PMNs to BAECs weakly induced angiogenesis. The angiogenesis induced by PMNs alone was further enhanced by treatment of the PMNs with N-formyl-methionyl-leucyl-phenylalanine (FMLP), a selective activator of PMN. The involvement of PMN adhesion to BAECs via adhesion molecules in angiogenesis was investigated by using monoclonal antibodies against E-selectin and intercellular adhesion molecule-1 (ICAM-1). These antibodies blocked both the PMN adhesion to BAECs and the enhancement of angiogenesis induced by FMLP-treated PMNs. Furthermore, the enhancement of angiogenesis by FMLP-treated PMNs was blocked by catalase, a scavenging enzyme of H2O2, but not by superoxide dismutase (SOD). These results suggest that PMNs induce angiogenesis in vitro, and that the mechanism of stimulation of angiogenesis by PMNs may involve the adherence of PMNs to endothelial cells via E-selectin and ICAM-1, and H2O2, but not superoxide. Thus, activated PMNs in pathological states may not only induce tissue injury, but may also function as regulators of angiogenesis.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center