Send to

Choose Destination
See comment in PubMed Commons below
Development. 2000 Jun;127(12):2673-83.

Axon routing at the optic chiasm after enzymatic removal of chondroitin sulfate in mouse embryos.

Author information

Department of Anatomy, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.


The effects of removing chondroitin sulfate from chondroitin sulfate proteoglycan molecules on guidance of retinal ganglion cell axons at the optic chiasm were investigated in a brain slice preparation of mouse embryos of embryonic day 13 to 15. Slices were grown for 5 hours and growth of dye-labeled axons was traced through the chiasm. After continuous enzymatic digestion of the chondroitin sulfate proteoglycans with chondroitinase ABC, which removes the glycosaminoglycan chains, navigation of retinal axons was disrupted. At embryonic day 13, before the uncrossed projection forms in normal development, many axons deviated from their normal course, crossing the midline at aberrant positions and invading the ventral diencephalon. In slices from embryonic day 14 embryos, axons that would normally form the uncrossed projection at this stage failed to turn into the ipsilateral optic tract. In embryonic day 15 slices, enzyme treatment caused a reduction of the uncrossed projection that develops at this stage. Growth cones in enzyme-treated slices showed a significant increase in the size both before and after they crossed the midline. This indicates that responses of retinal axons to guidance signals at the chiasm have changed after removal of the chondroitin sulfate epitope. We concluded that the chondroitin sulfate moieties of the proteoglycans are involved in patterning the early phase of axonal growth across the midline and at a later stage controlling the axon divergence at the chiasm.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center