Format

Send to

Choose Destination
J Agric Food Chem. 2000 May;48(5):1518-23.

Structure-activity relationships of (1'S)-1'-acetoxychavicol acetate, a major constituent of a southeast Asian condiment plant Languas galanga, on the inhibition of tumor-promoter-induced Epstein-Barr virus activation.

Author information

1
Department of Biotechnological Science, Faculty of Biology-Oriented Science and Technology, Kinki University, Iwade-Uchita, Wakayama 649-6493, Japan.

Abstract

The structure-activity relationships of (1'S)-1'-acetoxychavicol acetate (ACA), a cancer chemopreventive agent of food origin, were investigated in an inhibitory test of tumor promoter teleocidin B-4-induced Epstein-Barr virus (EBV) activation in Raji cells. Through a test of 16 derivatives, the structural factors regulating activity were found to be as follows: (1) the absolute configuration at the 1'-position does not affect activity; (2) hydrogenation of the terminal methylene group abolishes activity; (3) both the phenolic and alcoholic hydroxyl groups are compulsorily acetylated, and it is necessary that the former is oriented only at the position para to the side chain; (4) an additional acetoxyl group is allowed to locate at the ortho or meta position; and (5) substitution of the hydrogen atom at the 1'-position by a methyl group reduces activity. Upon esterase blockade in Raji cells, (1'R,S)-ACA suppressed EBV activation, the extent of which was the same as tested in the control, suggesting that ACA bearing two acetoxyl groups is an intracellular structure prerequisite for activity exhibition. The present study suggests that nucleophilic attack to the 3'-position is important and involved in the interaction of ACA with an unidentified target molecule(s) participating in the process of EBV activation.

PMID:
10820053
DOI:
10.1021/jf990528r
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center