Send to

Choose Destination
Int J Dev Neurosci. 2000 Jul-Aug;18(4-5):423-31.

Induction of cytokines in glial cells surrounding cortical beta-amyloid plaques in transgenic Tg2576 mice with Alzheimer pathology.

Author information

Paul Flechsig Institute for Brain Research, Department of Neurochemistry, University of Leipzig, Jahnallee 59, D-04109, Leipzig, Germany.


beta-Amyloid plaque deposition observed in brains from Alzheimer patients, might function as immune stimulus for glial/macrophages activation, which is supported by observations of activated microglia expressing interleukin (IL)-1beta and elevated IL-6 immunoreactivity in close proximity to amyloid plaques. To elucidate the mechanisms involved in beta-amyloid-mediated inflammation, transgenic mice (Tg2576) expressing high levels of the Swedish double mutation of human amyloid precursor protein and progressively developing typical beta-amyloid plaques in cortical brain regions including gliosis and astrocytosis, were examined for the expression pattern of a number of cytokines. Using ribonuclease protection assay, interleukin (IL)-1alpha,-beta, IL-1 receptor antagonist, IL-6, IL-10, IL-12, IL-18, interferon-gamma, and macrophage migration inhibitory factor (MIF) mRNA were not induced in a number of cortical areas of Tg2576 mice regardless of the postnatal ages studied ranging between 2 and 13 months. Using immunocytochemistry for IL-1alpha,beta, IL-6, tumor necrosis factor (TNF)-alpha, and macrophage chemotactic protein (MCP)-1, only IL-1beta was found to be induced in reactive astrocytes surrounding beta-amyloid deposits detected in 14-month-old Tg2576 mice. Using non-radioactive in situ hybridization glial fibrillary acidic protein (GFAP) mRNA was detected to be expressed by reactive astrocytes in close proximity to beta-amyloid plaques. The local immune response detected around cortical beta-amyloid deposits in transgenic Tg2576 mouse brain is seemingly different to that observed in brains from Alzheimer patients but may represent an initial event of chronic neuroinflammation at later stages of the disease.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center