Send to

Choose Destination
Brain Res. 2000 May 19;865(1):17-26.

Antinociception produced by mu opioid receptor activation in the amygdala is partly dependent on activation of mu opioid and neurotensin receptors in the ventral periaqueductal gray.

Author information

Department of Psychology, Western New England College, Springfield, MA 01119, USA.


Exposure to stressful or fear-inducing environmental stimuli activates descending antinociceptive systems resulting in a decreased pain response to peripheral noxious stimuli. Stimulating mu opioid receptors in the basolateral nucleus of the amygdala (BLA) in anesthetized rats produces antinociception that is similar to environmentally induced antinociception in awake rats. Recent evidence suggests that both forms of antinociception are mediated via projections from the amygdala to the ventral periaqueductal gray (PAG). In the present study, we examined the types of neurochemicals released in the ventral PAG that may be important in the expression of antinociception produced by amygdala stimulation in anesthetized rats. Microinjection of a mu opioid receptor agonist into the BLA resulted in a time dependent increase in tail flick latency that was attenuated by preadministration of a mu opioid receptor or a neurotensin receptor antagonist into the ventral PAG. Microinjection of a delta(2) opioid receptor antagonist or an NMDA receptor antagonist into the ventral PAG was ineffective. These findings suggest that amygdala stimulation produces antinociception that is mediated in part by opioid and neurotensin release within the ventral PAG.

[Indexed for MEDLINE]

Publication type, MeSH terms, Substances, Grant support

Publication type

MeSH terms


Grant support

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center