Molecular cloning and expression of mammalian peroxisomal trans-2-enoyl-coenzyme A reductase cDNAs

J Biol Chem. 2000 Aug 11;275(32):24333-40. doi: 10.1074/jbc.M001168200.

Abstract

Chain elongation of fatty acids is an important cellular process and is believed to occur in the endoplasmic reticulum of all eukaroytic cells. Herein we describe the cloning and characterization of a peroxisomal NADPH-specific trans-2-enoyl-CoA reductase, the key enzyme for a proposed peroxisomal chain elongation pathway. The reductase was solubilized and partially purified from guinea pig liver peroxisomes by affinity chromatography. On SDS-polyacrylamide gel electrophoresis, a 40-kDa band was identified as the enzyme, and its partial amino acid sequence (27 amino acids) was determined. A full-length cDNA for the reductase was cloned from a guinea pig liver cDNA library. The open reading frame of this nucleotide sequence encodes a 302-amino acid polypeptide with a calculated molecular mass of 32.5 kDa. Full-length mouse and human cDNA clones encoding homologous proteins have also been isolated. All of these translated polypeptides have the type I peroxisomal targeting signal, AKL, at the carboxyl terminus. The identity of the cloned enoyl-CoA reductase cDNAs was confirmed by expressing the guinea pig and human cDNAs in Escherichia coli. The His-tagged recombinant enzymes were found to have very high NADPH-specific 2-enoyl-CoA reductase activity with similar properties and specificity as the liver peroxisomal reductase. Both the natural and the recombinant enzyme catalyze the reduction of trans-2-enoyl-CoAs of varying chain lengths from 6:1 to 16:1, having maximum activity with 10:1 CoA. Northern blot analysis demonstrated that a single transcript of 1.3 kilobases is present in most mouse tissues, with particularly high concentrations in liver and kidney.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Base Sequence
  • Chromatography, Affinity
  • Cloning, Molecular
  • Fatty Acid Desaturases / chemistry
  • Fatty Acid Desaturases / genetics*
  • Fatty Acid Desaturases / metabolism*
  • Fatty Acid Synthases*
  • Guinea Pigs
  • Humans
  • Kinetics
  • Liver / enzymology*
  • Mammals
  • Mice
  • Microsomes, Liver / enzymology
  • Molecular Sequence Data
  • NADH, NADPH Oxidoreductases*
  • Peroxisomes / enzymology*
  • Rats
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / isolation & purification
  • Recombinant Proteins / metabolism
  • Sequence Alignment
  • Sequence Homology, Amino Acid
  • Substrate Specificity

Substances

  • Recombinant Proteins
  • Fatty Acid Desaturases
  • short chain trans-2-enoyl-CoA reductase
  • NADH, NADPH Oxidoreductases
  • Fatty Acid Synthases

Associated data

  • GENBANK/AF232009
  • GENBANK/AF232010
  • GENBANK/AF232011