Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurophysiol. 2000 May;83(5):3019-30.

Cerebellar ataxia: torque deficiency or torque mismatch between joints?

Author information

1
Program in Physical Therapy, Washington University School of Medicine, St. Louis, Missouri 63108, USA.

Abstract

Prior work has shown that cerebellar subjects have difficulty adjusting for interaction torques that occur during multi-jointed movements. The purpose of this study was to determine whether this deficit is due to a general inability to generate sufficient levels of phasic torque inability or due to an inability to generate muscle torques that predict and compensate for interaction torques. A second purpose was to determine whether reducing the number of moving joints by external mechanical fixation could improve cerebellar subjects' targeted limb movements. We studied control and cerebellar subjects making elbow flexion movements to touch a target under two conditions: 1) a shoulder free condition, which required only elbow flexion, although the shoulder joint was unconstrained and 2) a shoulder fixed condition, where the shoulder joint was mechanically stabilized so it could not move. We measured joint positions of the arm in the sagittal plane and electromyograms (EMGs) of shoulder and elbow muscles. Elbow and shoulder torques were estimated using inverse dynamics equations. In the shoulder free condition, cerebellar subjects made greater endpoint errors (primarily overshoots) than did controls. Cerebellar subjects' overshoot errors were largely due to unwanted flexion at the shoulder. The excessive shoulder flexion resulted from a torque mismatch, where larger shoulder muscle torques were produced at higher rates than would be appropriate for a given elbow movement. In the shoulder fixed condition, endpoint errors of cerebellar subjects and controls were comparable. The improved accuracy of cerebellar subjects was accompanied by reduced shoulder flexor muscle activity. Most of the correct cerebellar trials in the shoulder fixed condition were movements made using only muscles that flex the elbow. Our findings suggest that cerebellar subjects' poor shoulder control is due to an inability to generate muscle torques that predict and compensate for interaction torques, and not due to a general inability to generate sufficient levels of phasic torque. In addition, reducing the number of muscles to be controlled improved cerebellar ataxia.

PMID:
10805697
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center