Send to

Choose Destination
Nat Med. 2000 May;6(5):573-7.

High susceptibility to bacterial infection, but no liver dysfunction, in mice compromised for hepatocyte NF-kappaB activation.

Author information

The Lautenberg Center for Immunology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.


Based on the essential involvement of NF-kappaB in immune and inflammatory responses and its apoptosis-rescue function in normal and malignant cells, inhibitors of this transcription factor are potential therapeutics for the treatment of a wide range of diseases, from bronchial asthma to cancer. Yet, given the essential function of NF-kappaB in the embryonic liver, it is important to determine its necessity in the liver beyond embryogenesis. NF-kappaB is normally retained in the cytoplasm by its inhibitor IkappaB, which is eliminated upon cell stimulation through phosphorylation-dependent ubiquitin degradation. Here, we directed a degradation-resistant IkappaBalpha transgene to mouse hepatocytes in an inducible manner and showed substantial tissue specificity using various means, including a new method for live-animal imaging. Transgene expression resulted in obstruction of NF-kappaB activation, yet produced no signs of liver dysfunction, even when implemented over 15 months. However, the transgene-expressing mice were very vulnerable both to a severe immune challenge and to a systemic bacterial infection. Despite having intact immunocytes and inflammatory cells, these mice were unable to clear Listeria monocytogenes from the liver and succumbed to sepsis. These findings indicate the essential function of the hepatocyte through NF-kappaB activation in certain systemic infections, possibly by coordinating innate immunity in the liver.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center